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Abstract

Background: Modularity is the tendency for systems to organize into semi-independent units and can be a key to
the evolution and diversification of complex biological systems. Snake venoms are highly variable modular systems
that exhibit extreme diversification even across very short time scales. One well-studied venom phenotype dichotomy
is a trade-off between neurotoxicity versus hemotoxicity that occurs through the high expression of a heterodimeric
neurotoxic phospholipase A2 (PLA2) or snake venommetalloproteinases (SVMPs). We tested whether the variation in
these venom phenotypes could occur via variation in regulatory sub-modules through comparative venom gland
transcriptomics of representative Black-Speckled Palm-Pitvipers (Bothriechis nigroviridis) and Talamancan
Palm-Pitvipers (B. nubestris).

Results: We assembled 1517 coding sequences, including 43 toxins for B. nigroviridis and 1787 coding sequences
including 42 toxins for B. nubestris. The venom gland transcriptomes were extremely divergent between these two
species with one B. nigroviridis exhibiting a primarily neurotoxic pattern of expression, both B. nubestris expressing
primarily hemorrhagic toxins, and a second B. nigroviridis exhibiting a mixed expression phenotype. Weighted gene
coexpression analyses identified six submodules of transcript expression variation, one of which was highly associated
with SVMPs and a second which contained both subunits of the neurotoxic PLA2 complex. The sub-module
association of these toxins suggest common regulatory pathways underlie the variation in their expression and is
consistent with known patterns of inheritance of similar haplotypes in other species. We also find evidence that
module associated toxin families show fewer gene duplications and transcript losses between species, but module
association did not appear to affect sequence diversification.

Conclusion: Sub-modular regulation of expression likely contributes to the diversification of venom phenotypes
within and among species and underscores the role of modularity in facilitating rapid evolution of complex traits.
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Background
Modularity, the tendency for systems to organize into
semi-independent discrete units, is a central theme in the
evolution of biological systems and complex traits [1].
Modularity creates evolvability and the potential to adapt
to novel environments rapidly by eliminating or reducing
antagonistic pleiotropy while simultaneously permitting
advantageous phenotypic changes through the use of
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conserved genetic machinery [2, 3]. Gene regulatory net-
works are an especially common mechanism for mod-
ular evolution within and among lineages [4]. Inducing,
increasing, reducing, or eliminating expression of spe-
cific sub-modules can create or replicate advantageous
phenotypes through the recombination of sub-modular
features [5]. As such, modularity is a common characteris-
tic of many adaptive traits because sub-module associated
features can be rapidly modified without evolving ‘from
scratch’ [2]. Heliconius butterflies provide a classic exam-
ple where a variety of predator-deterring wing patterns
have evolved and diversified through variation in modu-
lar elements (e.g., color and spot-pattern) controlled by
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just a few conserved genes (e.g., the optix transcription
factor and the wntA signaling pathway) [5–7]. Identifying
modules and their sub-modules underlying variation in
highly variable modular traits can therefore provide valu-
able insight on the genetic basis of diversification across
micro and macroscales.
Snake venoms are highly variable adaptive traits com-

posed of 10–100 secreted proteins that collectively work
to subdue prey or deter predation [8, 9]. Despite the per-
ceived complexity of the venom system, venoms appear
to evolve rapidly and respond to local selection pressures
over short timescales [10, 11]. The exceptional degree of
phenotypic variation observed in venoms can partially
be contributed to the modularity of the venom system.
Because toxin expression and production is localized to
a specialized gland [12–15] (but see [16, 17]), the venom
system is a functional module that is inherently more free
to vary with limited pleiotropic effects. Moreover, venom
functionality is, at least in part, dependent on the coordi-
nated expression of specific toxins or toxin classes which
may covary geographically or among species [18–20]. In
many cases, recurrent patterns of variation in venom
compositions suggest that expression of associated tox-
ins represent sub-modules of variation, though empirical
tests of sub-modularity of toxins are lacking.
One example of venom variation likely mediated by

sub-modular regulation is an apparent phenotypic trade-
off between neurotoxicity and hemotoxicity. In crotalid
vipers (Viperidae: Crotalinae), hemorrhagic venoms are
most common and are a function of high proportions of
several toxin families, especially snake venom metallo-
proteinases (SVMPs) [21, 22]. However, in some lineages
neurotoxicity has emerged as a principal phenotype [22].
An extremely well-documented manifestation of neuro-
toxicity in crotalid venoms is based on high expression of
a heterodimeric β-neurotoxic phospholipase A2 (PLA2)
complex [23, 24]. These phenotypes can manifest as
interspecific, intraspecific, and/or ontogenetic variation
[18–20, 22, 25–28], prompting the establishment of a
“Type A/Type B" nomenclature to describe the variation
in rattlesnakes. Type A venoms refer to those dominated
by the neurotoxic PLA2s, and Type B venoms refer to those
with high proportions of SVMPs. Notably, there are also
descriptions of Type A+B venoms which have high pro-
portions of neurotoxic PLA2s and hemorrhagic SVMPs,
but these phenotypes are rare even in Type A - Type
B contact zones [11, 19, 29]. Here, recurring phenotypic
patterns, the lack of apparent phylogenetic signal (even
over ecological time scales), and the usage of common
genetic building blocks (i.e., toxin families) is suggestive of
modularity mediating the evolution of these phenotypes.
An opportunity to test this exists in the arboreal pitvipers

of the genus Bothriechis. One species, B. nigroviridis,
exhibits a neurotoxic venom phenotype driven by the

high abundance of a neurotoxic heterodimeric PLA2
named nigroviriditoxin [30, 31]. Bothriechis nigroviridis
is unique among species with neurotoxic venom because
of its ecological differentiation; B. nigroviridis is an arbo-
real high-elevation specialist while most others are mid-
low elevation terrestrial species. The sister species to B.
nigroviridis, B. nubestris, appears to occupy an extremely
similar ecological niche based on its documented range
and conservedmorphology [32]. Although empirical stud-
ies of B.nubestris’ venom have yet to be conducted, its
divergence from B. nigroviridis 6–10 mya would provide
sufficient temporal opportunity for venom diversification
[33]. Bothriechis nigroviridis and B. nubestris can there-
fore provide a test case for examining mechanisms of
phenotypic diversification in a modular framework.
We sought to describe and compare the venom gland

transcriptomes of B. nigroviridis and B. nubestris to
understand toxin evolution in a modular framework. We
characterize the venom gland transcriptomes of repre-
sentatives of each species and identify key dimensions
of variation within and between species. We identified
conserved and unique toxins and used weighted-gene
co-expression network analysis (WGCNA) to test for
sub-modules of variation among distinct venom types.
Based on the observation that neurotoxic and hemo-
toxic phenotypes occur independently, in combination,
or as ontogenetic changes, we hypothesized that toxins
associated with neurotoxic and hemorrhagic phenotypes
(i.e., neurotoxic PLA2s and SVMPs) would segregate into
distinct sub-modules of correlated expression variation.
Additionally, we examine instances of intraspecific tran-
script duplication and loss and comparative sequence
divergence. We hypothesized that if modular expression
is a primary driver of variation, gene duplications and
sequence diversification would be reduced in sub-module
associated toxin families whose function has been selec-
tively optimized and is primarily regulated by expression.

Results
Transcriptome characterization
To examine the evolutionary mechanisms underlying
venom divergence we sequenced, assembled, and char-
acterized the venom gland transcriptomes of two Both-
riechis nigroviridis (CLP1856 and CLP1864) and two B.
nubestris (CLP1859 and CLP1865) (Fig. 1, Table 1). The
number of recovered toxins and recovered families were
generally consistent with those of other viperid transcrip-
tomes [25, 34–37] and with estimates of toxin family size
in early high-throughput transcriptomes of B. schlegelii
and B. lateralis [38] (Table 2, Table 3).
We recovered 1517 total transcripts for B. nigroviridis,

which included 43 toxins from 13 toxin families. The
venom transcriptome of B. nigroviridis was largely dom-
inated by the expression of the heterodimeric neurotoxic
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Fig. 1 Phylogeny of Bothriechis based on [33] and a distribution map for B. nigroviridis and B. nubestrismade in R v.3.5.3 (https://www.R-project.org/)
based on ranges described in [74] and [33] and publicly available specimen localities in [32]. Sampled localities are shown as dots with specimen
labels. Animal images were modified and used with permission from credit holder Alexander Robertson

PLA2, nigroviriditoxin [31], especially in the northern
individual where it accounted for 60.3% of toxin expres-
sion (Fig. 2, Table 2). BPPs and SVSPs were also abundant
in B. nigroviridis venoms, accounting for 7.6% and 14.6%
of toxin expression, respectively (Fig. 2, Table 2). The
high expression of the neurotoxic PLA2 complex observed
in the northern individual is consistent with the neuro-
toxic phenotype previously described in individuals from
a similar locality (∼50 km north of CLP1864’s locality,
though from a different cordillera) [30] (Type A based
on the rattlesnake nomenclature). Consistent with the
Type A phenotype, there was low expression of CTL and
SVMP variants which, in a previous proteomic study of B.
nigroviridis, were not detected in the venom [30].

Unlike the northern B. nigroviridis, the southern
B. nigroviridis showed substantial expression of the
nigroviriditoxin subunits as well as SVMPs (Fig. 2,
Table 2). Both subunits of nigroviriditoxin and seven of
the nine SVMPS were identified as outliers in expression
comparisons between the two individuals; nigroviridi-
toxin and one SVMP were found to be expressed out-
side of the 99th percentile of the null distribution in the
northern B. nigroviridis while six SVMPs were expressed
outside of the 99th percentile of the null distribution in
the southern B. nigroviridis (Table 2). In addition to the
toxin family differences, four CTL and 11 SVSP variants
fell outside of the 99th percentile of the null distribution
of expression divergence between individuals (Table 2). Of

Table 1 Specimen information for Bothriechis individuals used in this work

Species Specimen ID Museum ID Total Reads Merged Total Unique CDS CDS Passing QC SRR

B. nigroviridis CLP1856 MZUCR23264 20002019 17227317 3177 807 SRR9968896

B. nigroviridis CLP1864 MZUCR23270 24641535 21035386 3323 1416 SRR9968897

B. nubestris CLP1859 MZUCR23267 20628335 16855601 3125 1476 SRR9968894

B. nubestris CLP1865 MZUCR23271 23443610 20108934 3297 1461 SRR9968895

https://www.R-project.org/
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Table 2 Toxin transcripts recovered for Bothriechis nigroviridis and associated classifications as orthologs or paralogs, expected
transcripts per million reads (TPM) estimated by RSEM, likely over expression classification as detected in intraspecific variation
comparisons (i.e., above the 99th percentile of expected variance in expression based on a nontoxin null distribution), and
coverage-based assessment of likely presence or absence

Toxin ID Ortholog/ Paraloge TPM Likely Over Expression Presence/Absence

CLP1856 CLP1864 CLP1856 CLP1864

Bnigro-BPP-1 Ortholog 29752.98 52897.54 CLP1864 + +

Bnigro-CTL-1 Ortholog 5601.97 3.99 CLP1856 + -

Bnigro-CTL-2 Ortholog 47.42 4353.63 CLP1864 - +

Bnigro-CTL-3 Ortholog 4669.5 3027.69 - + +

Bnigro-CTL-4 Paralog 5395.92 4095.4 - + +

Bnigro-CTL-5 Paralog 7653.39 26592.73 CLP1864 + +

Bnigro-CTL-6 Paralog 8809.55 3537.01 - + +

Bnigro-CTL-7 Paralog 0 22739.95 CLP1864 - +

Bnigro-HYAL-1 Ortholog 196.31 76.03 - + +

Bnigro-LAAO-1 Ortholog 2070.21 412.19 CLP1856 + +

Bnigro-NGF-1 Ortholog 836.47 1692.1 - + +

Bnigro-NUC-1 Ortholog 1575.76 1532.59 - + +

Bnigro-PDE-1 Ortholog 1356.81 524.9 - + +

Bnigro-PLA2-1 Ortholog 53023.62 183732.85 CLP1864 + +

Bnigro-PLA2-2 Ortholog 102035.05 235935.29 CLP1864 + +

Bnigro-SVMPII-1 Ortholog 3405.08 327.07 CLP1856 + -

Bnigro-SVMPII-2 Ortholog 4055.07 290.21 CLP1856 + -

Bnigro-SVMPII-3 Ortholog 3980.17 24.59 CLP1856 + -

Bnigro-SVMPII-4 Paralog 52404.14 11942.88 - + +

Bnigro-SVMPIII-1 Ortholog 0.68 73.09 CLP1864 - +

Bnigro-SVMPIII-2 Ortholog 2157.48 151.17 CLP1856 + +

Bnigro-SVMPIII-3 Ortholog 12908.06 124.4 CLP1856 + +

Bnigro-SVMPIII-4 Ortholog 6587.36 2375.96 CLP1856 + -

Bnigro-SVMPIII-5 Ortholog 48324.54 19456.86 - + +

Bnigro-SVSP-1 Ortholog 5067.97 24092.29 CLP1864 + +

Bnigro-SVSP-2 Ortholog 4588.27 3441.02 - + +

Bnigro-SVSP-3 Ortholog 1633.58 4877.37 CLP1864 + +

Bnigro-SVSP-4 Ortholog 1174.85 19016.69 CLP1864 + +

Bnigro-SVSP-5 Ortholog 552.15 644.59 - + +

Bnigro-SVSP-6 Ortholog 1712.44 8567.09 CLP1864 - +

Bnigro-SVSP-7 Ortholog 792.67 4112.06 CLP1864 + +

Bnigro-SVSP-8 Ortholog 17931.94 0.41 CLP1856 + -

Bnigro-SVSP-9 Paralog 11.35 25032.15 CLP1864 - +

Bnigro-SVSP-10 Paralog 183.43 2875.45 CLP1864 + +

Bnigro-SVSP-11 Paralog 2827.4 0.16 CLP1856 + -

Bnigro-SVSP-12 Paralog 3.89 8988.68 CLP1864 - +

Bnigro-SVSP-13 Paralog 21317.45 0 CLP1856 + -

Bnigro-VEGF-1 Ortholog 56.56 17963.5 CLP1864 + +

Bnigro-VEGF-2 Ortholog 33.93 117.99 - + +

Bnigro-VEGF-3 Ortholog 14.81 62.5 - + +

Bnigro-VEGF-4 Ortholog 25.22 77.81 - + +

Bnigro-Vespryn-1 Paralog 8.98 45.01 - + +

Bnigro-Waprin-1 Ortholog 24.92 36.31 - + +
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Table 3 Toxin transcripts recovered for Bothriechis nubestris and associated classifications as orthologs or paralogs, expected
transcripts per million reads (TPM) estimated by RSEM, over expression classification as detected in intraspecific variation comparisons
(i.e., above the 99th percentile of expected variance in expression based on a nontoxin null distribution), and coverage-based
assessment of likely presence or absence

Toxin ID Ortholog/ Paralog TPM Likely Over Expression Presence/Absence

CLP1859 CLP1865 CLP1859 CLP1865

Bnubes-BPP-1 Ortholog 5097.77 63484.01 CLP1865 - +

Bnubes-CRISP-1 Paralog 17682.06 8634.01 CLP1859 + +

Bnubes-CTL-1 Ortholog 48790.4 45771.89 - + +

Bnubes-CTL-2 Ortholog 13469.89 9134.83 - + +

Bnubes-CTL-3 Ortholog 18273.91 8462.73 CLP1859 + +

Bnubes-CTL-4 Paralog 134247.25 46096.08 CLP1859 + +

Bnubes-CTL-5 Paralog 93992.03 44194.92 CLP1859 + +

Bnubes-CTL-6 Paralog 41975.1 23098.03 CLP1859 + +

Bnubes-HYAL-1 Ortholog 312.56 480.7 - + +

Bnubes-KUN-1 Paralog 211.54 231.29 - + +

Bnubes-LAAO-1 Ortholog 6946.11 12529.4 - + +

Bnubes-NGF-1 Ortholog 3347.21 5435.31 - + +

Bnubes-NUC-1 Ortholog 1184.42 2318.22 - + +

Bnubes-PDE-1 Ortholog 1156.15 1461.55 - + +

Bnubes-PLA2-1 Ortholog 3073.31 3700.01 - + +

Bnubes-PLA2-2 Ortholog 2321.73 209.08 CLP1859 + +

Bnubes-PLA2-3 Paralog 4646.1 91726.32 CLP1865 + +

Bnubes-SVMPII-1 Ortholog 11115.83 7867.18 - + +

Bnubes-SVMPII-2 Ortholog 7446.39 7182.3 - + +

Bnubes-SVMPII-3 Ortholog 85.26 6966.13 CLP1865 + +

Bnubes-SVMPII-4 Paralog 9408.28 9519.11 - + +

Bnubes-SVMPII-5 Paralog 72976.3 52932.86 - + +

Bnubes-SVMPIII-1 Ortholog 4.02 52.08 CLP1865 - +

Bnubes-SVMPIII-2 Ortholog 7436.41 6075.36 - + +

Bnubes-SVMPIII-3 Ortholog 14334.66 14644.25 - + +

Bnubes-SVMPIII-4 Ortholog 6744.23 10192.23 - + +

Bnubes-SVMPIII-5 Ortholog 131295.22 69281.92 CLP1859 + +

Bnubes-SVMPIII-6 Paralog 808.43 2990.11 - + +

Bnubes-SVSP-1 Ortholog 5793.23 2477.48 CLP1859 + +

Bnubes-SVSP-2 Ortholog 1544.31 2924.28 - + +

Bnubes-SVSP-3 Ortholog 3126.56 3125.05 - + +

Bnubes-SVSP-4 Ortholog 7665.15 2252.2 CLP1859 + +

Bnubes-SVSP-5 Ortholog 2301.11 4094.43 - + +

Bnubes-SVSP-6 Ortholog 5123.44 2684.33 - + +

Bnubes-SVSP-7 Ortholog 795.14 393.28 - + +

Bnubes-SVSP-8 Ortholog 3207.97 10487.13 - + +

Bnubes-SVSP-9 Paralog 823.13 475.48 - + +

Bnubes-VEGF-1 Ortholog 3542.02 413.99 CLP1859 + +

Bnubes-VEGF-2 Ortholog 222.72 119.16 - + +

Bnubes-VEGF-3 Ortholog 109.03 51.22 - + +

Bnubes-VEGF-4 Ortholog 61.69 68.27 - + +

Bnubes-Waprin-1 Ortholog 28.73 25.35 - + +
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Fig. 2 Venom characterization for Bothriechis nigroviridis. a Venom transcriptome compositions for B. nigroviridis based on average expression
between two individuals. b Venom transcriptome compositions of each individual used. The venom of B. nigroviridis CLP1864 is largely consistent
with the published proteome for this species. The high proportion of snake venommetalloproteinases (SVMPs) observed in the venom gland
transcriptome of B. nigroviridis CLP1856 has not been described previously. c Intraspecific variation in transcript expression for B. nigroviridis. Data
have been centered log-ratio transformed to account for their compositional nature. Dashed lines denote the 99% confidence interval of nontoxin
expression and red lines are lines of best fit based on orthogonal residuals. B. nigroviridis displays substantially more variation in toxin expression,
primarily in C-type lectins (CTLs), SVMPs, and snake venom serine proteinases (SVSP)s

the 43 total toxins assembled for B. nigroviridis, 27 were
expressed outside of the 99th percentile of the nontoxin
null distribution. In many cases, expression differences
could be explained by toxin absence. Overall, 14 tox-
ins were found to be absent in one individual with six
absences in the southern B. nigroviridis and eight absences
in the northern B. nigroviridis. The overall pattern of
toxin expression is more characteristic of a Type A+B
phenotype than Type A [39].
For B. nubestris we recovered 1787 transcripts which

included 42 toxins from 14 toxin families (Table 3). In
contrast to B. nigroviridis, toxin expression and pres-
ences/absences were generally similar between the two
sequenced individuals of B. nubestris (Fig. 3, Table 3). In
total, 14 toxins were expressed outside of the 99th per-
centile of the nontoxin null distribution. Toxins whose
expression was outside the 99th percentile spanned all
major families including BPP, CTLs, PLA2s, SVMPs,
and SVSPs. However, only two toxins, Bnube-BPP-1 and
Bnube-SVMPIII-1, were found to be absent in one indi-
vidual. The overall expression pattern for both individuals
was broadly consistent with observed Type B venoms [18].
SVMPs and CTLs were highly abundant components in
the venom making up, on average 34.9% and 40.4% of
toxin expression, respectively. In addition to SVMPs and

CTLs, B. nubestris also expressed three PLA2s at lower
levels. Two of these PLA2s were orthologous to the alpha
and beta subunits of nigroviriditoxin on average account-
ing for 0.2% and 0.5% of toxin expression, respectively.
The third PLA2, Bnube-PLA2-3, made up 15.7% of toxin
expression in one B. nubestris individual (CLP1865) and
appears homologous to a non-enzymatic, myotoxic PLA2
in B. schlegelii [40, 41].

Interspecific variation and submodule identification
OrthoFinder [42] identified 1282 one-to-one orthologs,
which included 32 orthologous toxins. Due to the high
variability in toxin expression observed between indi-
viduals of B. nigroviridis, we compared toxin expres-
sion of each individual to the average expression of B.
nubestris (Fig. 4). High variation in ortholog expression
was observed between the northern B. nigroviridis and
B. nubestris, with 14 toxins detected as differentially
expressed by DESeq2 (Fig. 4, Table 4). The most promi-
nent pattern was the variation in expression of nigrovirid-
itoxin subunits and SVMPs (Fig. 4); a pattern which sup-
ports the classification of the northern B. nigroviridis’
venom as Type A and B. nubestris’ venom as Type B. In
contrast, only 8 orthologous toxins were detected as dif-
ferentially expressed between the southern B. nigroviridis
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Fig. 3 Venom characterization for Bothriechis nubestris. a Venom transcriptome compositions for B. nubestris based on average expression between
two individuals for each species. b Venom transcriptome compositions of each individual used. The venom of B. nubestris is dominated by SVMPs
and CTLs. c Intraspecific variation in transcript expression for B. nubestris. Data have been centered log-ratio transformed to account for their
compositional nature. Dashed lines denote the 99% confidence interval of nontoxin expression and red lines are lines of best fit based on orthogonal
residuals. The venoms of B. nubestris CLP1859 and CLP1865 are largely similar, though CLP1865 displays elevated expression of a basic PLA2 and BPPs

and B. nubestris (Fig. 4, Table 5). Moreover, the vari-
ance in orthologous expression between the southern
B.nigroviridis and B. nubestris was substantially lower
than observed in the previous comparison, due largely to
increased expression of several SVMPs.

We implemented WGCNA assigning three venom phe-
notypes as "treatments": Type A (B. nigroviridisCLP1864),
Type A+B (B. nigroviridis CLP1856), and Type B (B.
nubestris CLP1859 and CLP1865). After transcript filter-
ing, 83 transcripts, including 22 toxin transcripts, were

Fig. 4 Interspecific comparisons of toxin expression between average Bothriechis nubestris toxin expression and a Type A B. nigroviridis and b Type
A+B B. nigroviridis. TPM values have been centered log-ratio transformed to account for the compositional nature of the data. Dashed lines denote
the 99% confidence interval of nontoxin expression and red lines are lines of best fit based on orthogonal residuals. Paralogs are shown near axes for
each species
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Table 4 DESeq2 expression analyses for B. nigroviridis A versus B. nubestris toxins comparison

Toxin baseMean log2FoldChange lfcSE stat p-value p-adj

SVSP-4 56149.550 -2.041 0.790 -2.582 0.010 0.136

SVSP-1 62813.029 -2.650 0.676 -3.920 <0.001** 0.003**

SVSP-2 14843.268 -0.759 0.651 -1.166 0.243 0.819

SVSP-6 31232.805 -1.245 0.643 -1.935 0.053 0.405

SVSP-7 10256.001 -2.901 0.713 -4.069 <0.001** 0.002**

SVSP-3 21197.683 -0.765 0.534 -1.433 0.152 0.685

SVSP-8 24729.723 13.915 1.148 12.121 <0.001** <0.001**

VEGF-2 575.456 0.408 0.512 0.798 0.425 0.968

VEGF-4 176.204 -0.412 0.432 -0.953 0.341 0.913

VEGF-3 329.392 0.240 0.558 0.429 0.668 0.983

CTL-2 21966.999 1.227 0.588 2.087 0.037 0.322

CTL-1 75597.100 13.412 0.619 21.666 <0.001** <0.001**

SVMPII-3 26046.537 7.004 3.014 2.324 0.020* 0.228

SVMPII-2 58055.510 4.545 0.471 9.658 <0.001** <0.001**

CTL-3 27445.563 2.004 0.682 2.940 0.003** 0.061

LAAO-1 81941.767 4.437 0.564 7.862 <0.001** <0.001**

NGF-1 17559.052 1.241 0.606 2.047 0.041 0.350

NUC-1 24635.841 0.0662 0.630 0.105 0.916 0.999

PDE-1 22815.921 1.204 0.537 2.242 0.025* 0.258

PLA2-1 153799.239 -5.920 0.508 -11.652 <0.001** <0.001***

PLA2-2 193031.819 -7.691 1.132 -6.796 <0.001** <0.001***

SVMPIII-5 1120896.609 2.273 0.848 2.681 0.007 0.115

SVMPIII-3 146258.094 6.755 0.495 13.645 <0.001** <0.001**

SVMPIII-2 68851.762 5.381 0.499 10.779 <0.001** <0.001**

SVMPIII-4 96830.991 1.714 0.522 3.286 0.001** 0.025*

SVSP-5 12727.207 2.176 0.638 3.408 0.001** 0.019*

SVMPII-1 75173.762 4.756 0.534 8.899 <0.001** <0.001**

BPP-1 162148.870 -0.756 1.137 -0.665 0.506 0.982

HYAL-1 3084.833 2.260 0.587 3.853 <0.001** 0.004**

SVMPIII-1 676.400 -1.536 2.179 -0.705 0.481 0.982

VEGF-1 19141.242 -3.323 1.095 -3.036 0.002** 0.050

Waprin-1 65.350 -0.587 0.626 -0.938 0.348 0.915

Statistically significant p-values are denoted with asterisks

segregated into six modules (Fig. 5, in Additional file 1:
Table S1). Most of the toxins associated with the Type
A/Type B phenotypes segregated into two distinct mod-
ules. Module 2 contained five of the seven orthologous
SVMPs while module 3 contained both nigroviriditoxin
subunits. SVSPs were distributed across three modules,
including module 2 and module 3. Similarly, BPPs were
the only toxin assigned to module 1 which appeared
to primarily capture intraspecific variation in B. nube-
stris. Of the three orthologous CTLs, one was removed
during filtering and the remaining two were assigned
to modules 2 and 6. Finally, two VEGFs were assigned

to two separate modules as well. We did not identify
any transcription factors associated with the putatively
Type A or Type B modules. However, we did iden-
tify a translation initation factor, TIF-4E1, associated
with module 2.

Gene family analyses
To better understand the dynamics of transcript turnover
(i.e., gene duplications and transcript losses through
either gene loss or gene silencing) in relation to fami-
lies associated with specific modules, we inferred toxin
family phylogenies for four highly expressed and diverse
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Table 5 DESeq2 expression analyses for B. nigroviridis A + B versus B. nubestris toxins comparison

Toxin baseMean log2FoldChange lfcSE stat p-value p-adj

SVSP-4 17900.673 1.529 0.879 1.740 0.082 0.327

SVSP-1 23976.545 -0.846 0.744 -1.136 0.256 0.562

SVSP-2 17011.775 -1.609 0.720 -2.234 0.025* 0.171

SVSP-6 15736.775 0.634 0.743 0.854 0.393 0.704

SVSP-7 3569.069 -0.970 0.718 -1.351 0.177 0.483

SVSP-3 13267.220 0.373 0.656 0.569 0.570 0.805

SVSP-8 61332.390 -1.966 0.681 -2.886 0.004** 0.053

VEGF-2 398.593 1.786 0.519 3.445 0.001** 0.012*

VEGF-4 113.051 0.845 0.535 1.580 0.114 0.391

VEGF-3 218.467 1.899 0.590 3.220 0.001** 0.021*

CTL-2 15138.097 7.366 0.698 10.557 <0.001** <0.001**

CTL-1 68552.480 2.542 0.432 5.890 <0.001** <0.001**

SVMPII-3 40750.244 -0.784 3.020 -0.260 0.795 0.908

SVMPII-2 67043.525 0.277 0.433 0.641 0.522 0.780

CTL-3 25464.314 0.979 0.707 1.384 0.166 0.469

LAAO-1 77794.353 1.648 0.514 3.206 0.001** 0.022*

NGF-1 13847.466 1.826 0.701 2.606 0.009** 0.088

NUC-1 23423.714 -0.436 0.683 -0.638 0.523 0.782

PDE-1 27866.068 -0.637 0.571 -1.115 0.265 0.572

PLA2-1 50595.962 -4.499 0.465 -9.673 <0.001** <0.001***

PLA2-2 90982.168 -6.867 2.083 -3.296 0.001** 0.018*

SVMPIII-5 1147158.941 0.489 0.697 0.702 0.483 0.766

SVMPIII-3 202400.932 -0.410 0.438 -0.937 0.349 0.661

SVMPIII-2 70220.557 1.077 0.453 2.377 0.017* 0.134

SVMPIII-4 111332.469 -0.222 0.472 -0.470 0.638 0.837

SVSP-5 10829.466 1.964 0.726 2.707 0.007** 0.074

SVMPII-1 77902.986 0.911 0.480 1.898 0.058 0.273

BPP-1 120779.234 -0.334 2.184 -0.153 0.878 0.954

HYAL-1 3203.542 0.434 0.624 0.696 0.487 0.767

SVMPIII-1 236.935 4.758 2.234 2.130 0.033* 0.197

VEGF-1 2696.561 4.593 1.031 4.457 <0.001** <0.001**

Waprin-1 51.896 -0.411 0.679 -0.606 0.545 NA

toxin families and identified species-specific gene dupli-
cation and transcript loss events. As expected, our
results suggest that the majority of toxin genes in B.
nigroviridis and B. nubestris were likely present in their
common ancestor. In three of the four toxin fami-
lies, OrthoFinder identified one-to-one orthologs for the
majority of toxins, although expression levels were not
necessarily conserved (Fig. 5). However, each toxin fam-
ily exhibited at least one species-specific toxin loss and
three of the families showed evidence of both losses
and duplications.
Transcript turnover was lower in families with a higher

proportion of toxins sorted into a specific submodule.

The two CTLs were split between two expression sub-
modules (M2 and M6) and had four deletions and one
duplication. Similarly, five SVSPs were split between
three modules with three SVSPs assigned to module
2. SVMPs were inferred to have a single duplication
and loss and were similarly assigned to three modules
(M2, M4, and M6), though the five consistently highly
expressed SVMPs were assigned to M2. PLA2s were the
only family to experience a single species-specific toxin
transcript loss, and the two orthologous toxins were
assigned to M3.
In both SVMPs and SVSPs, we observed sequence

divergence that occurred in one or more toxin copies
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Fig. 5 Expression profiles for the six expression modules identified by CEMiTool. Each line represents a transcript and its change in expression across
treatments. Toxins assigned to each module are colored by class and labelled. Nontoxins associated with a module are shown as grey lines. Toxins
generally associated with the Type A and Type B venom phenotypes (neurotoxic PLA2 subunits and SVMPs, respectively) largely separated into two
modules: M2 and M3. B. nigroviridis with Type A+B venom showed generally intermediate expression of A-B associated toxins

following a duplication event (Fig. 6). In the case of
SVSPs, nucleotide sequence divergence was sufficient to
give conflicting phylogenetic signal when compared to

the amino acid-based phylogeny inferred by OrthoFinder
(Fig. 6, in Additional File 1: Figure S1). Although we
did not find a significant difference in expression of
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one-to-one toxin orthologs compared to duplicated or
conserved toxins (p = 0.28), we did find a marginally
significant interaction between species and expression
of one-to-one orthologs versus duplicated or conserved
toxins (p = 0.08, Fig. 7). More specifically, B. nubestris
appeared to exhibit proportionately higher expression of
toxins, but also disproportionately higher expression of
duplicated and conserved toxins (Fig. 7).

Sequence based selection analyses
To determine the extent and role of sequence diversi-
fication in differentiating venoms, we compared pair-
wise values of ω, dS, and dN between toxin and non-
toxin orthologs. Toxin sequences exhibited significantly
higher values of ω (p <0.001) with three toxins, CTL-2,
SVMPII-1, and SVMPIII-5, having ω values >1 indicat-
ing positive selection (Fig. 7). Despite having a higher ω

ratio than the background nontoxins, the overall mean
ω for toxin sequences was 0.56. Additionally, we tested
for differences in synonymous and nonsynonymous sub-
stitution rates between toxins and nontoxins under the
expectation that toxins and nontoxins should display sim-
ilar background synonymous substitution rates but differ
in nonsynonomous substitutions resulting in diversify-
ing selection. As expected, we found no differences in

synonymous substitution rates between toxins and non-
toxins (p = 0.252) but significantly higher nonsynonymous
substitution rates (p <0.001). Moreover, nine toxins had
nonsynonymous substitution above the 95th percentile of
nontoxin sequences; nearly double the number of toxins
above the 95th percentile of ω. However, four of these tox-
ins were found to have synonymous substitution above the
95th percentile of nontoxin sequences.

Discussion
We tested the hypothesis that dimensions of the
neurotoxic-hemorrhagic venom phenotype were associ-
ated with specific submodules of toxin expression. We
identified six submodules of expression variation, which
included a primarily Type A submodule containing both
nigroviriditoxin homolog subunits and a primarily Type
B submodule containing the majority of orthologous
SVMPs. The findings supported our hypothesis and
implicate submodular regulation as amechanism for rapid
venom diversification. Modular expression regimes would
allow rapid transitions between phenotypes while avoid-
ing orminimizing occurrence of low-fitness intermediates
[2] and facilitate ontogentic shifts observed in many
groups [27, 28, 43, 44]. In the Bothriechis system, mod-
ularity effectively explains many of the toxin expression

Fig. 6 Toxin family phylogenies and expression plots of a C-type lectins (CTLs), b phospholipase A2s (PLA2s), c snake venommetalloproteinases
(SVMPs), and (d) snake venom serine proteases (SVSPs). Single copy toxin orthologs identified by OrthoFinder are marked by brackets in the
phylogeny. Toxin transcript gains and losses were inferred based on a simple parsimony model and are shown on phylogenies as grey circles and
rectangles, respectively. Expression plots are based on average expression of each toxin for each species and dashed lines denote 99% confidence
interval established by nontoxin expression. Identified orthologs are shown as colored circles and losses as colored inverted triangles. Duplicated
toxins are shown as colored diamonds and expression of each copy is plotted against expression of their orthologous counter part in the other
species (identified with bracketing on plots)
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Fig. 7 Violin plots comparing expression of orthologous and paralogous toxins for Bothriechis nigroviridis and B. nubestris. Orthologous and
paralogous toxins were not differentially expressed between the species

differences between B. nigroviridis and B. nubestris. The
patterns of modularity observed here are also consistent
with on-going genomic research to elucidate the genomic
architecture mediating venom phenotype evolution
[15, 45, 46]. Taken together these findings provide strong
support for a role of sub-modular variation mediating
changes in snake venom phenotypes.

Modularity underlying the neurotoxic-hemorrhagic
dichotomy
The patterns of modularity and submodular organiza-
tion inferred by WGCNA analyses explained much of
the inter- and intraspecific variation in toxin expres-
sion we observed for B. nigroviridis and B. nubestris. We
recovered a venom gland transcriptome for the northern
B. nigroviridis consistent with the published proteomic
venom phenotype and Type A venom expression. The
increase in expression of nigroviriditoxin/nigroviriditoxin
homologs is accomplished primarily through modifi-
cation of regulatory patterns in module 3. Similarly,
modifications to regulatory elements in module 2 can
mediate expression regime shifts of many toxins, espe-
cially SVMPs. The strong association of these modules
with species-specific patterns of inheritance demonstrate
how modularity can promote rapid phenotypic transition

among recently diverged and/or eco-morphically con-
served species.
Of note was the Type A+B expression pattern in the

southern B. nigroviridis which suggested intermediate or
combined expression of the Type A and Type B submod-
ules. Although Type A+B venoms have been documented
in multiple species [19, 39] they are primarily associ-
ated with species exhibiting population level neurotoxic-
hemorrhagic dichotomies and often occur at lower fre-
quency than either the Type A or Type B phenotypes
[11]. If this pattern holds true in B. nigroviridis, it would
suggest the existence of individuals or populations of B.
nigroviridis that have primarily Type B venom. Population
level sampling has been difficult to attain due to the inher-
ent rarity of this species and the logistical challenges of
sampling many of the undisturbed, high-elevation regions
of its distribution. However, population level sampling
will be key for understanding the ecological and evo-
lutionary dynamics of venom variation in this species.
More importantly, the occurrence of the Type A+B phe-
notype in B. nigroviridis and other species suggests that
the Type A and B submodules are not mutually exclusive.
Rather, each module likely has independent genetic archi-
tectures which can occur in variable combinations among
populations and species.
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Modular expression effectively explains Type A/Type
B toxin variation among these two species, but several
toxin families such as CTLs, SVSPs, and VEGFs did not
fit this framework. The variation observed in these fam-
ilies underscores the diversity of expression patterns in
venom toxins and presents an ongoing challenge for the
future. Although a great deal of work has been devoted to
dissecting broad patterns of venom variation (e.g.,
neurotoxic-hemorrhagic dichotomy), the mechanisms
influencing variation in other diverse toxin families such
as SVSPs and CTLs deserves further investigation.
While our findings present evidence for submodularity

of toxin expression, it is important to note their limitations
as well. WGCNA identifies submodular clusters based on
positive and negative correlations in transcript expression
across assigned treatments with the expectation that these
transcripts may be influenced by common regulatory ele-
ments. Because coexpression network analyses are based
on observed patterns of expression rather than experi-
mental validation, they are better regarded as hypotheses
of submodular association rather than empirical find-
ings. Moreover, WGCNA are ideally implemented using
thousands of candidate transcripts derived from thor-
oughly assembled and annotated genomes with tens of
replicates across treatments for robust inference. Unfor-
tunately, genomic resources remain limited for snakes
and such large sample sizes are difficult to attain for
many species. Here, we have implemented WGCNA with
a much reduced sample size and far fewer candidate
genes than is typically ideal, which may make module
assignment less powerful and robust, especially for lowly
expressed transcripts. Nevertheless, our analyses assigned
many highly expressed toxins to biologically plausible
submodules corresponding to known axes of phenotypic
variation in snake venom. Thus, we believe that WGCNA
as implemented here represent an important proof-of-
concept in the relevance and potential of these methods
and the conceptual framework of modularity for evolu-
tionary study of venom differentiation.

Mechanisms promoting modularity
Although our WGCNA and similar approaches iden-
tify submodules of variation based on phenomenologi-
cal rather than mechanistic models, observed patterns
of expression and recent genomic work implicate sev-
eral general mechanisms contributing tomodularity of the
system. For instance, one of the primary advantages of co-
expression network approaches is the ability to identify
regulatory components such as transcription factors that
potentially mediate the identified expression differences.
In sub-module 2, we identified one translation initiation
factor that showed increased expression with progres-
sion towards the Type B phenotype. Translation initia-
tion factors enhance translation by stabilizing mRNA and

facilitating assembly of ribosomal complexes [47]. In
mammals, TIF-4E is required for efficient translation and
acts as a translational regulatory mechanism [47]. Here,
its association with module 2 may reflect an effort to pro-
mote rapid translation of the relatively large and highly
expressed SVMPs. Though concordant expression of TIF-
4E and module 2 toxins does not necessarily imply a
causative link, it does present a hypothesis to test through
functional validation.
The identification of primarily neurotoxic and hem-

orrhagic submodules are also consistent with recent
genomic evidence which show that Type A and Type
B toxins are inherited as independent haplotypes
[15, 45, 46]. In some cases, presence and absence dif-
ferences in these genes have been implicated as the
primary drivers of variance in Type A/Type B pheno-
types. In the case of the northern B. nigroviridis, absence
of the SVMP tandem array could account for both the
low expression of SVMPs and their inferred absence
from the transcriptome (Table 2). In contrast, both B.
nubestris individuals express low levels of a nigroviridi-
toxin homolog. Despite patterns of low expression, the
sequences of the B. nubestris PLA2s were highly con-
served with respect to nigroviriditoxin; both subunits
had over 99% nucleotide sequence similarity with three
nonsynonomous substitutions occurring in the beta sub-
unit and one synonymous substitution occurring in the
alpha subunit. The conservation of these sequences sug-
gests that the B. nubestris variants of nigroviriditoxin have
likely retained their neurotoxic function and that conver-
gence on a "low neurotoxicity" phenotype therefore occurs
through regulatory evolution in Bothriechis rather than
through gene loss/gain as is observed in other species
[15, 45, 46].
If expression patterns of the Type A and Type B sub-

modules are inherited as independent haplotypes with
additive effects, we can hypothesize that combined phe-
notypes are possible and should exhibit intermediate
expression of of each module. The expression patterns
apparent in the southern B. nigroviridis support these pre-
dictions as it displayed intermediate expression between
the Type A B. nigroviridis and the Type B B. nubestris
for the majority of Type A and Type B associated tox-
ins. Additive expression of species-specific toxins has also
been observed in interspecific hybrids where the puta-
tively heterozygous offspring exhibit lower expression lev-
els than presumably homozygous parents [35]. In the case
of B. nigroviridis, intermediate expression observed in the
southern B. nigroviridis could feasibly be the result of
heterozygosity at Type A and Type B loci, though such
a hypothesis is largely postulation without genomic evi-
dence. As such, comparative genomics approaches that
test architectural mechanisms promoting and mediating
modularity are a promising avenue for future work.
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Transcript turnover and diversification in amodular system
We expected selective optimization for modularity of
toxin expression to affect toxin transcript turnover and
sequence diversification. We tested for these effects in
four toxin families and found that although all four toxin
families had experienced some turnover, rates of duplica-
tion and loss were higher in toxins less associated with
specific modules. Many snake toxin families have expe-
rienced dramatic expansions since their common ances-
tor [9] though the frequency of toxin duplications and
losses within species is not clear. The marginal decrease
in transcript-turnover with increased association with
a specific submodule suggests selection for maintaining
these toxins. Duplications are often implicated as having
a primary role in toxin neofunctionalization by creating
functional redundancy that allows toxins to ‘explore’ the
phenotype space [9, 48, 49], but can also occur as a mech-
anism to increase expression of beneficial toxins [50]. We
observed both increased sequence divergence following
duplication and amarginal increase in expression of dupli-
cated or conserved (i.e., not deleted or silenced) toxins
specific to the B. nubestris lineage. Whether the possible
emphasis on expression of paralogous versus orthologous
toxins reflect phenomena unique to the B. nubestris lin-
eage or a broader trend in the evolution of the more
complex, hemorrhagic venom types is not clear, especially
given our limited sample size. However, increased sam-
pling of lineages and their toxin compositions will provide
improved resolution to test the extent and role of gene
duplication and loss in venom diversification.
We expected sequence diversification to be lowest in

module associated toxins, but we did not find evidence to
support this. Two of the three toxins with ω above one
were SVMPs associated with Module 2, suggesting that
although regulation may be conserved/coordinated, func-
tionality is not. Many of the toxins with elevated rates of
nonsynonymous substitution had similarly high rates of
synonymous substitutions, which may indicate an over-
all higher substitution rate than the genomic background.
Notably, SVSPs, which were generally less associated with
a specific module, displayed some of the highest values of
both dN and dS. The overall elevated substitution rates
of these toxins and the lack of correspondence to clear
expression regimesmay reflect higher rates of substitution
and recombination in these gene regions, though patterns
of gene expression and the organization of the genetic
architecture of SVSP regions is not well understood. Over-
all, toxin ω values were generally below what is expected
under positive selection with just a few toxins displaying
ω values greater than 1. Instead, toxin evolution between
species appears to function under a model of relaxed
purifying selection, which has been similarly noted
in other interspecific comparisons of toxin sequence
evolution [20].

Conclusions
Snake venoms are key innovations that have allowed the
diversification of species across the globe. Unfortunately,
many of the genomic mechanisms governing rapid vari-
ation of phenotypes remain uncertain. Through compar-
ative transcriptomics and coexpression network analyses,
we demonstrated how rapid transition between a common
phenotypic venom dichotomy can occur through sub-
modular regulation of the associated toxins. Modularity
of the venom system and submodular variation of venom
classes likely contribute to broader patterns of variation
observed across taxonomic levels [51]. As genomic and
transcriptomic resources become more available for ven-
omous snakes, systems-based approaches such as the co-
expression network analyses used here will yield more
comprehensive understanding of the evolution of venoms
and other complex, modular traits. Although our work
presents these findings in the limited context of a single
species pair, it highlights the importance of considering
how complex traits function and evolve as a modular
system. Our understanding of the selective forces that
generate modularity and how modularity in turn medi-
ates and facilitates the evolution of complex traits remains
incomplete. However, as we have shown here, on-going
efforts to address these questions in dynamic adaptive
systems can provide key insights that lead to a more inte-
grated understanding of the genomics of rapid adaptation
in complex traits.

Methods
Sample collection
We collected two individuals of Bothriechis nigroviridis
and two B. nubestris in May-June of 2016 for venom
gland extraction and sequencing. Due to the smaller range
of B. nubestris, both individuals were collected from the
same locality (∼1 km apart), San Gerardo de Dota, San
Jose province, Costa Rica. Bothriechis nigroviridis occu-
pies a wider range than B. nubestris and we collected two
individuals from distant populations. One of these indi-
viduals (CLP1864), was collected from outside of the La
Esperanza sector of Parque Tapanati, Cartago province,
Costa Rica, a locality that is ∼50 km south of specimens
collected and used in previous proteomic studies charac-
terizing the venom of this species [30]. The second indi-
vidual (CLP1856) came from the southern most portion
of the species’ range in Costa Rica, Las Tablas, Puntare-
nas province, Costa Rica (Fig. 8) ∼200 km southeast of
specimens used in [30].
Following collection, each individual had its venom

collected via manual extraction. Collected venoms were
lyophilized and stored at -20 C for later use. Each
animal was sacrificed four days later when transcrip-
tion of venom proteins is at its maximum [52], via
injection of sodium pentobarbitol (100mg/kg). Venom
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Fig. 8 Distribution of a pairwise dN/dS ratios, b synonymous substitution rates, and c nonsynonymous substitution rates of orthologous transcripts.
Dashed red lines denote 95 percentiles based on distribution of nontoxins. Lines beneath plots indicate toxins, and toxins with values greater than
the 95 percentile are marked with blue arrows. In c, toxins above the 95th percentile with elevated synonymous mutation rates (i.e., above the 95th
percentile in b are colored yellow. Toxins had statistically higher dN/dS ratios and nonsynonymous substitution rates based on a Wilcoxon signed
rank test. Toxin and nontoxin synonymous mutation rates were not significantly different

glands were dissected and stored separately in approx-
imately 2 mL of RNAlater preservative. Animal car-
casses were preserved as museum specimens with 10%

buffered formalin and deposited in the Universidad de
Costa Rica. The above methods were approved by Uni-
versity of Central Florida Institutional Animal Care and
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Use Committee (IACUC) protocol 16-17W, Clemson
University IACUC protocol number 2017-067, and Uni-
versidad de Costa Rica Comimté Institucional para el
Cuidado y Uso de los Animales (CICUA) permit number
CICUA-082-17.

Venom gland transcriptome sequencing
Total RNA was extracted from left and right glands inde-
pendently using a standard, Trizol reagent extraction as
described in [53]. Briefly, diced venom gland tissues were
submerged in 500 μL of Trizol, homogenized with a ster-
ile 20-gauge needle, and treated with an additional 500
μL of Trizol and 200 μL chloroform. RNA was then
separated from tissue, cellular components, and DNA
by centrifuging the total mix in a 5Prime phase lock
gel heavy tube for 20 minutes at 12,000 g. Supernatant
containing the RNA was transferred to a new tube and
RNA was precipitated with 500 μL of isopropyl alco-
hol. Pelleted RNA was washed in 75% ethanol and re-
suspended in RNAase free water. Extracted total RNAwas
checked for quality and quantified using either an Agi-
lent 2100 Bioanalyzer or Agilent 2200 TapeStation and
stored at -80 C.
We prepared cDNA libraries from 1 μL high quality

total RNA using the NEBNext Ultra RNA library Prep
Kit for Illumina following the manufacturer’s instruc-
tions. Specifically, we isolated polyadenalated RNA with
the NEB Poly(A) Magnetic Isolation Module (New Eng-
land Biolabs) and fragmented resulting mRNA by heat
fragmentation at 70° C for 14.5 minutes to attain an aver-
age size of approximately 370 bp. mRNA fragments were
reverse transcribed to cDNA and each library was lig-
ated with a unique combination of index primers and
Illumina adapters. The cDNA libraries were amplified
through PCR using the NEBNext High-Fidelity 2X Hot
Start PCR Master Mix and 14 cycles of PCR. Amplified
cDNA was purified with Agencourt AMPure XP PCR
Purification beads. The resulting libraries were checked
for quality, fragment size distribution, and concentra-
tion on either an Agilent 2100 Bioanalyzer or Agilent
2200 TapeStation. KAPA qPCR was additionally per-
formed on each sample library to determine amplifiable
concentrations. Libraries were then pooled in groups of
twelve with equal representation of amplifiable cDNA for
sequencing.
Sequencing took place on an Illumina HiSeq 2000 at

the Florida State University College of Medicine’s Trans-
lational Science Laboratory. Combined libraries were
multiplexed and sequenced with a 150 bp paired-end
rapid run lane. Raw reads were demultiplexed and qual-
ity checked in FastQC [54]. To account for reads which
may have been mis-assigned during demultiplexing, we
used jellyfish v.2.2.6 [55] and KAT v.2.3.4 [56] to iden-
tify and filter reads with kmers that exhibited more

than a 500 fold difference in occurrence between sam-
ples sequenced on the same lane. Adapter sequences
and low quality bases were then trimmed using trim-
galore v.0.4.4 [57]. Finally, to increase both quality and
total length of read sequences, we used PEAR v 0.9.6
[58] to merge paired reads with a 3’ overlap of greater
than 10 bp.

Transcriptome assembly and analyses
Previous transcriptome studies have shown the chal-
lenges associated with venom gland transcriptome assem-
bly, due to the contrast in a proportionately low num-
ber of highly expressed toxin transcripts compared to
the much broader, low expression of house keeping
genes [59]. To overcome this, we performed three inde-
pendent assemblies using Extender [53], the DNAs-
tar NGen assembler v.15.0, and Trinity v.2.4.0 [60] per
the strategy suggested in Holding et al. [59]. Sequence
identities of toxins from each assembly were identified
via local blastx search of SWISS-prot’s curated toxins
database. Contigs with a blast match of greater than
90% identity were then clustered against a database
of identified snake toxins to annotate coding regions
of 90% similarity or greater. Coding regions of remain-
ing toxin contigs were annotated manually in Geneious
v.10.2.3 [61]. Contigs which were not identified as tox-
ins were annotated by clustering against a database of
previously identified snake nontoxins to annotate coding
regions of 90% similarity or greater representing nontoxin
transcripts used in later analyses. Annotated transcripts
from independent assemblies were combined and dupli-
cate sequences as well as coding regions with ambigu-
ous sites were removed. The remaining transcripts were
screened for chimeric or mis-assembled coding sequences
by mapping merged reads against these sequences with
bwa v.0.7.16 [62] and checking for uneven read distribu-
tion across sites. Specifically, sequences with sites where
the mean number of bases per read on either side of a
site differed by more than 50% of the mean read length
were considered likely chimeras, checked manually, and
removed accordingly. We clustered the remaining tran-
scripts at a threshold of 98% similarity to account for
toxin alleles or recent paralogs that may be present.
This represented the final transcriptome for each indi-
vidual. To account for variation among individuals in
a species and for stochastic variation in the assembly
process that may have resulted in failure to assemble
specific toxins in a given individual, we combined final
contig sets for individuals of the same species, removed
duplicates, and clustered coding regions of 98% similar-
ity to create a master transcriptome for each species.
These species-specific master transcriptomes were then
used for subsequent read mapping and expression
analyses.
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Expression analyses and ortholog identification
To determine relative expression of transcripts, we
mapped reads from individuals to their species mas-
ter transcriptome with Bowtie2 v2.3.2 and calculated
relative expression with RSEM v.1.3.0 [63]. Intraspe-
cific differences in expression were assessed using
species-specific datasets for B. nigroviridis and B.
nubestris. Because our limited intraspecific sampling
precluded formal tests for differential expression
within species, we generated pairwise null distribu-
tions of expression divergence for each species based
on nontoxin expression to identify outlier toxins
similar to [64]. Data were first centered log-ratio (clr)
transformed to normalize the expression distributions
while accounting for the compositional nature of rela-
tive expression values (e.g., TPM) using the cmultRepl
function in the R package zCompositions [25, 65, 66].
Toxins whose pairwise divergence in expression fell
outside the 99th percentile of the centered log-ratio
transformed nontoxin distributions were considered
outliers that are likely differential expression. RSEM
can assign non-zero values to transcripts that may
not be present in the transcriptome through mis-
mapping of reads from other transcripts with regions of
high similarity. To verify the extent to which tox-
ins varied in presence or absence within species we
aligned merged reads to the species-specific transcript
sets to screen for poor read mapping. Toxins that had
regions greater than 10% of the total sequence length
with less than 5x coverage or highly anomalous read
distributions (determined by manual review) were
considered absent in the transcriptome of a given
individual.
Toxin families in snakes are notorious for undergo-

ing rapid expansions and losses, which is problematic
for interspecific comparisons which assume orthology
among matched transcripts. To overcome this we identi-
fied orthologous groups of transcripts using OrthoFinder
v.2.3.1 [42] specifying multisequence alignments with
mafft. OrthoFinder identifies groups of sequences derived
from a single gene in the common ancestor of compared
species (i.e., orthogroups), as well as identifies conserved
orthologs within orthogroups. We classified transcripts
as orthologs or paralogs by parsing the OrthoFinder
“orthologs" output to identify single copy orthologs and
one-to-one orthologs within orthogroups using a cus-
tom python script (orthocombiner.py). For interspecific
comparisons, expression data for orthologous and par-
alogous transcripts were combined into a single dataset
where paralogous transcripts were given an expres-
sion value of zero where absent for a given species.
We used estimates of read counts from RSEM to test
for differences in transcript expression with DESeq2 in
R v.3.5.3 [67].

Network analyses
We performed weighted gene coexpression network anal-
ysis using the R package CEMitool [68] in R. A variance
stabilizing transformation (vst) was used and transcripts
were filtered to reduce correlation between variance and
gene expression. We used pearson’s coefficient as the cor-
relation method and a beta value of 10 was automatically
selected. The minimum module size was set to 1 to allow
the greatest flexibility in identifying modules of correlated
expression. Because of the high variability in venom com-
position observed among B. nigroviridis (see above), we
annotated samples as one of three venom types which cor-
respond to venom phenotypes observed in rattlesnakes:
B. nigroviridis Type A (CLP1864), B. nigroviridis Type
A+B (CLP1856), and B. nubestris type B (CLP1859 and
CLP1865).

Gene family analyses
To more closely examine how toxin family expansion,
duplications, and loss have shaped venom composition,
we constructed phylogenies for the four most highly
expressed toxin families: C-type lectins (CTLs), PLA2s,
snake venom serine proteases (SVSPs), and SVMPs.
Alignments for each family were generated with mafft
v.7.407 [69] and checked manually in Geneious. Partition-
ing schemes for each gene family were determined using
PartitionFinder v.2 [70]. Phylogenies were then recov-
ered with MrBayes v.3.2.6 [71]. MrBayes was run using
one cold and three heated chains for 10 million genera-
tions with a variable rate prior. We then identified and
mapped species-specific deletion and duplication events
onto the trees based on the output of OrthoFinder. We
considered toxins that were unassigned an ortholog to
be indicative of gene loss in one species while one to
many ortholog assignments indicated duplications within
a species. We tested for differences in expression of one-
to-one orthologs versus conserved and duplicated toxins
with a two-way factorial with toxin type and species as
factors in R. TPM values were used as the metric for
expression and were centered log-ratio transformed to
linearize the data while preserving their compositional
nature [25, 65].

Sequence analyses
We compared divergence of orthologous toxin and non-
toxin transcripts by calculating dN/dS ratios (ω). Ortholo-
gous transcripts were first aligned by codon using PRANK
v.170427 [72]. PRANK alignments were then used as input
to estimate ω, dS, and dN with codeml in paml v. 4.9 [73].
We compared ω, dS, and dN of toxin genes against

a background of nontoxins as in [20] to discern if
toxin genes exhibited higher synonymous and/or non-
synonymous substitution rates and if toxins displayed
high rates of positive selection (i.e., higher values of
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ω). We excluded sequences with dS <0.001 due to
the possibility of estimating excessively inflated val-
ues of ω, and sequences with dS >0.10 to reduce
the risk of including misidentified orthologs. Statisti-
cal differences in ω, dS, and dN values between toxins
and nontoxins were tested with a wilcoxon sign rank
test in R.
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Additional file 1: This file contains supplemental table S1 and
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